Федеральное государственное бюджетное образовательное учреждение высшего образования «ИВАНОВСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ ИМЕНИ Д.К. БЕЛЯЕВА» (ФГБОУ ВО Ивановская ГСХА)

ФАКУЛЬТЕТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ И БИОТЕХНОЛОГИИ В ЖИВОТНОВОДСТВЕ

УТВЕРЖДЕНА проректором по учебной и воспитательной работе
______ М.С. Манновой 17 ноября 2021 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«Органическая и физколлоидная химия»

специальность	36.05.01 Ветеринария				
Направленность (профиль)	Ветеринарно-санитарная экспертиза				
Уровень образовательной пр	Специа	литет			
Форма обучения		Очная			
Трудоемкость дисциплины,	3ET	3			
Трудоемкость дисциплины,	час.	108			
Распределение часов дисцип	лины		Виды кон	нтроля:	
по видам работы: Контактная работа— всего	54		Экзамены	r	1
в т.ч. лекции	18		Зачеты	Į.	1
лабораторные	6		Курсовые	паботы	
лиоориторные	O		(проекты)		
практические	30		(inpountary)	,	
Самостоятельная работа	54				
Разработчик:					
Доцент				Л.В. Вирзум	
			(подпись)	r-J	
СОГЛАСОВАНО:					
Заведующий кафедрой естес дисциплин	ственнона	учных		И.К. Наумова	
диециплип			(подпись)		
Председатель методической	комиссии	ſ			
факультета				С.В. Егоров	
\$ way 12 1 0 1 w			(подпись)	C.B. Eropos	
Документ рассмотрен и одо	-	седании			
методической комиссии фак	ультета		от 15 ноября 2021 года		

Иваново 2021

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Целью освоения дисциплины является дать студентам теоретические, методологические и практические знания, формирующие современную химическую основу для освоения профилирующих учебных дисциплин и выполнения основных профессиональных задач: профилактики и лечения болезней животных, повышения производства доброкачественных продуктов и сырья животного происхождения, охраны окружающей среды от загрязнений и др.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В соответствии с	
учебным планом	
дисциплина	
относится к	базовой части образовательной программы
Статус дисциплины	обязательная
Обеспечивающие (предшествующие) дисциплины	Школьные курсы химии биологии и физики, а также вузовские курсы: «Неорганическая и аналитическая химия», «Биологическая физика»
Обеспечиваемые (последующие) дисциплины	«Биологическая химия», «Физиология и этология животных», «Цитология, гистология и эмбриология», «Гигиена животных», «Ветеринарная фармакология. Токсикология» и др.

^{*} базовой / вариативной

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) (ХАРАКТЕРИСТИКА ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ)

Шифр и наименование компетенции		Дескрипторы компетенции	Номер(а) раздела(ов) дисциплины (модуля), отвечающего(их) за формирование данного(ых) дескриптора(ов) компетенции
СК-1 Способность к использованию	D	3-1. Законы и понятия естественнонаучной дисциплины, опирающиеся на базовые знания.	Все разделы
основных законов естественно	знает:	3-2. Воспроизводит теоретические обоснования для решения учебно- практических задач.	Все разделы
научных дисциплин в профессиональ	Умеет:	У-1. Объясняет сущность основных понятий и законов естественнонаучных дисциплин.	1
ной деятельности		У-2. Применяет полученные знания для решения учебно-практических задач.	Все разделы
ветеринарного врача	Владеет:	В-1. Выбирает методы решения учебно-практических задач	Все разделы

^{**} обязательная / по выбору / факультативная

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

4.1. Содержание дисциплины (модуля)

			Виды учебных занятий и				v.	
		тру	доем	иκ	ость	, час.	NĬX*	
№ п/п	Темы занятий	лекции	практические	(семинарские)	лабораторные	самостоятельная работа	Контроль знаний*	Применяемые активные и интерактивные технологии обучения
1. T o	еоретические основы органичес	кой	хим	и	1			
	Предмет и задачи органической		2			4	КР	
	химии, физической и							
	коллоидной химии. Строение,							
	классификация и номенклатура							
	органических соединений.							
1.2.	Механизмы реакций в	2	2			4	УО,	
	органической химии.						КР	
	сновные классы органических (ш			1	
2.1.	Углеводороды. Алканы,	2	6		2	6		Лекция – визуализация.
	циклоалканы, алкены,						KP,	
	алкадиены, алкины, арены:						К	
	изомерия, номенклатура,							
	строение, способы получения и							
	химические свойства.	2	2			4	D	п
	Спирты. Фенолы.	2	2			4	P,	Лекция – визуализация.
	Классификация, изомерия,						КР, УО	
	номенклатура, методы получения, электронное						yU	
	строение. Химические свойства.							
	Важнейшие представители							
2.3		2	2			4	КР,	Лекция – визуализация.
	Классификация, изомерия,						К	
	номенклатура, методы							
	получения, электронное							
	строение. Химические свойства.							
	Важнейшие представители							
3.	Классы биологически важных		ине	ни				
	Углеводы. Ди – и		4		2	6		Лекция – визуализация.
	полисахариды. Распространение						KP,	
	в природе. Понятие о						УО	
	фотосинтезе и гликогенезе.							
	Биологическая роль.							
	Классификация.	1	2	-		4	VO	
	Карбоновые кислоты.	1	2			4	УО, Т	
	Строение, химические свойства, способы получения.						Τ	
	способы получения. Одноосновные предельные							
	карбоновые предельные кислоты.							
	Гидроксикислоты, имеющие							
	важное биологическое значение.							
3.3	Липиды. Классификация	1	4		2	6	КР,	

	липидов. Биологическая роль липидов. Жиры (глицериды, триацилглицерины, триацилглицеролы). Фосфолипиды, Гликолипиды. Строение, свойства,				ВЛР	
3.4	биологическое значение. Амины. Аминоспирты. Номенклатура. Изомерия, их строение, свойства, биологическое значение. Аминокислоты. Распространение в природе. Биологическая роль и их применение в сельском хозяйстве, ветеринарии и медицине.		2	4	КР, УО, Р	
3.5	Стероиды. Строение, общая характеристика их биологической роли.	1	2	6	Т	Лекция – визуализация.
	Дисперсные системы в биологи				VO	
4.1	Свойства дисперсных систем и растворов биополимеров.	2	2	6	УО	

^{*} Указывается форма контроля. Например: УО — устный опрос, КЛ — конспект лекции, КР — контрольная работа, ВЛР — выполнение лабораторной работы, ВПР — выполнение практической работы, К — коллоквиум, Т — тестирование, Р — реферат, Д — доклад, ЗКР — защита курсовой работы, ЗКП — защита курсового проекта, Э — экзамен, 3 — зачет.

4.2. Распределение часов дисциплины (модуля) по семестрам

Вид занятий	1 в	сурс	2 к	ypc	3 к	ypc	4 к	ypc	5 к	ypc	ИТОГО
Вид занятии	1	2	3	4	5	6	7	8	9	10	итого
Лекции		18									18
Лабораторные		6									6
Практические		30									30
Итого контактной работы		54									54
Самостоятельная работа		54									54

5. ОРГАНИЗАЦИЯ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Организация самостоятельной работы студентов основана на ПВД-12 О самостоятельной работе обучающихся $\Phi \Gamma EOV B\Pi O$ «Ивановская ΓCXA имени академика Д.К.Беляева»

5.1. Содержание самостоятельной работы по дисциплине (модулю)

В течение семестра студентам рекомендуется выбрать из предлагаемого списка темы эссе и рефератов наиболее интересные для них. В соответствии с календарно - тематическим планом освоения дисциплины по выбранной теме подготовить краткое сообщение для одногруппников с презентацией. В процессе подготовки к выступлению и занятию преподаватель консультирует студента, помогает более полно, доступно и интересно раскрыть тему.

СПИСОК ТЕМ РЕФЕРАТОВ

- 1. Органическая химия химия жизни.
- 2. Теория химического строения органических соединений А.М. Бутлерова.
- 3. Природные источники органических соединений.
- 4. Классификация органических соединений по углеродному скелету и по функциям.
- 5. Международная систематическая номенклатура ИЮПАК (IUPAC).
- 6. Изомерия органических соединений. Структурная изомерия, таутомерия.
- 7. Пространственная изомерия (стереоизомерия). Конформация молекул.
- 8. Методы выделения и очистки органических соединений: фильтрование, кристаллизация.
- 9. Методы выделения и очистки органических соединений: перегонка, возгонка.
- 10. Методы выделения и очистки органических соединений: экстракция, хроматография.
- 11. Методы выделения и очистки органических соединений: тонкослойная, колоночная, газовая хроматографии.
- 12. Использование полимеров в сельском хозяйстве, ветеринарии, промышленности, быту.
- 13. Терпены, терпеноиды, каротиноиды. Распространение в растительном и животном мире, биологическое значение.
- 14. Дефолианты, репелленты, феромоны и другие биологически активные соединения, их получение и применение.
- 15. Хлороформ, йодоформ, дихлорэтан, фреоны. Использование галогенпроизводных в ветеринарии, медицине, сельском хозяйстве.
- 16. Глицерин (глицерол). Распространение в природе. Глицераты, нитроглицерин, фосфоглицераты. Получение. Применение. и др.
- 17. Лецитины. Особенности строения и биологическая роль.
- 18. Ксантины. Строение молекул. Содержание в биологических объектах.

Список тем рефератов ежегодно обновляется, в дополнение наиболее активные и любознательные студенты могут предложить свои темы по предварительному согласованию с преподавателем и календарно — тематическим планом освоения дисциплины.

Темы, выносимые на самостоятельную проработку:

- 1) Предмет и задачи органической химии.
- 2) Основные положения Теории химического строения А.М. Бутлерова.

_

- 3) Классы алифатических углеводородов. Особенности строения, способы получения и химические свойства.
- 4) Понятие о полимерах. Реакции полимеризации и поликонденсации.
- 5) Биологическая роль многоатомных спиртов на примере глицерина.
- 6) Простые и сложные липиды. Химическое строение и биологическая роль.
- 7) Карбоксильные соединения, входящие в состав простых жиров. Отличие в химическом строении и агрегатном состоянии.
- 8) Ферментативный и щелочной гидролиз простых липидов.
- 9) Понятие полисахариды. Природные источники, особенности строения и биологическая роль.
- 10) Аминоспирты. Строение и химические свойства.
- 11) Гетероциклы, входящие в структуры нуклеиновых кислот.
- 12) Нуклеиновые кислоты. Реакции образования и превращения в клетках.
- 13) Кефалины. Химическая природа. Биологическая роль в живых организмах.

5.2. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- проработку учебного материала (по конспектам, учебной и научной литературе, электронных учебных ресурсов);
- изучение тем теоретического курса, запланированных для самостоятельного освоения;
 - написание рефератов и выступления с докладами на практических занятиях.

Оценка результатов самостоятельной работы организуется в соответствии с действующей в академии бально – рейтинговой системой следующим образом:

- Контрольные работы, устные опросы, коллоквиумы.

Выступление и защита реферата.

5.3. Учебно-методическое обеспечение самостоятельной работы

При выполнении самостоятельной работы рекомендуется использовать основную и дополнительную литературу, методические указания и разработки кафедры, указанные в $\pi.6.1.-6.6$.

Для выполнения студентами самостоятельной работы не предусмотрено методических рекомендаций и указаний. На лабораторно – практических занятиях студенты получают индивидуальные задания и выполняют их к следующему занятию:

В соответствии с календарно - тематическим планом освоения дисциплины по выбранной теме подготовить краткое сообщение с презентацией.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. Основная учебная литература, необходимая для освоения дисциплины (модуля)

- 1) Грандберг, И.И. Органическая химия. М., Высш. шк. 1987. 480 с.(169)
- 2) Васильцова, И.В. Органическая и физколлоидная химия [Электронный ресурс] : учебное пособие / И.В. Васильцова, Т.И. Бокова, Г.П. Юсупова. Электрон. дан. Новосибирск : НГАУ (Новосибирский государственный аграрный университет), 2013. 155 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=44513 Загл. с экрана.

6.2. Дополнительная учебная литература, необходимая для освоения дисциплины (модуля)

- 1) Заплишный,В.Н. Органическая химия: учебник для вузов / В. Н. Заплишный. Краснодар: Печатный двор Кубани,. 1999. 368с. (38)
- 2) Вирзум Л.В., Кузьмина Т.А., Шаповалова Т.А. Углеводороды. Иваново: Ивановская ГСХА. им. академика Д.К. Беляева , 2010. Учебное пособие (99)
- 3) Кузьмина Т.А., Шаповалова Т.А. Белки. Иваново: Ивановская ГСХА. им. академика Д.К. Беляева , 2014. Учебное пособие. (70)

6.3. Ресурсы сети «Интернет», необходимые для освоения дисциплины (модуля)

- 1.Образовательные сайты по органической химии с флеш анимацией: http://lotoskay.ucoz.ru/load/flesh_animacii/organicheskaja_khimija/185-2
- 2.Библиотека ИвГСХА http://www.ivgsha.ru/about_the_university/library/
- 3. Электронные ресурсы библиотеки ИвГСХА

http://ivgsha.uberweb.ru/about_the_university/library/elektronnye-biblioteki.php?clear_cache=Y

4.Единое окно доступа к образовательным ресурсам http://window.edu.ru

6.4. Методические указания для обучающихся по освоению дисциплины (модуля)

- 1) Наумова И.К. Коллоидные растворы. Растворы ВМС Ивановская ГСХА. им академика Д.К. Беляева, 2014. Учебное пособие.
- 2) Кузьмина Т.А., Шаповалова Т.А. Кислородсодержащие органические соединения. Ивановская ГСХА.2007 . Учебное пособие
- 3) Вирзум Л.В., Кузьмина Т.А., Шаповалова Т.А. Углеводороды. Иваново: Ивановская ГСХА. им. академика Д.К. Беляева, 2010. Учебное пособие
- 4) Кузьмина Т.А., Шаповалова Т.А. Белки. Иваново: Ивановская ГСХА. им. академика Д.К. Беляева, 2014. Учебное пособие.
- 5) Вирзум Л.В., Кузьмина Т.А., Шаповалова Т.А. Кислородсодержащие соединения: спирты, фенолы, альдегиды, кетоны: Иваново: Ивановская ГСХА. им. Д.К. Беляева, 2016. 71 с.
- 6) Кузьмина Т.А., Шаповалова Т.А. Гетероциклы: Иваново: Ивановская ГСХА им. академика Д.К. Беляева, 2013. Учебное пособие. 20 с.

6.5. Информационные справочные системы, используемые для освоения дисциплины (модуля) (при необходимости)

- 1. Научная электронная библиотека http://e-library.ru
- 2.Информационно-правовой портал «Консультант» http://www.consultant.ru

6.6. Программное обеспечение, используемое для освоения дисциплины (модуля) (при необходимости) (при необходимости)

- 1. Операционная система типа Windows.
- 2. Интегрированный пакет прикладных программ общего назначения Microsoft Office.
- 3. Интернет браузеры.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

п/п		
1.	пр. учебная аудитория, предназначенная для проведения занятий лекционного типа.	укомплектована специализированной (учебной) мебелью, набором демонстрационного оборудования и переносными учебно-наглядными пособиями, обеспечивающими тематические иллюстрации, соответствующие рабочей программе дисциплины, а также техническими средствами обучения: стационарным мультимедийным проектором, портативным компьютером типа «Ноутбук», стационарным раздвижным экраном).
2.	групповых и индивидуальных консультаций, для текущего	Специализированная (учебная) мебель, переносные технические средства обучения (проектор, ноутбук, экран). Дистилляторы ДЭ-
3.	групповых и индивидуальных консультаций, для текущего	Специализированная (учебная) мебель, переносные технические средства обучения (проектор, ноутбук, экран). Вытяжные шкафы, дистиллятор, весы технические ВЛТК-500, термостат, фотоэлектроколориметр ФЭК — КФК-2, штативы лабораторные, наборы для титрования, муфельная печь.
4.	Помещение для самостоятельной работы	укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой (15 ПК) с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации, принтером, 3 сканерами

Приложение № 1 к рабочей программе по дисциплине (модулю)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«органическая и физколлоидная химия»

1. Перечень компетенций, формируемых на данном этапе

***			Форма	
Шифр		Дескрипторы компетенции контроля		Оценочные
компетенции			период его	средства
1		2	проведения*	
1		3	4	5
CK-1.	Zugori	3-1. Законы и понятия естественнонаучной дисциплины, опирающиеся на базовые знания.	УО, КР, К, Р Э, 2 сем.	Вопросы для проведения контрольных работ, коллоквиумов и устных опросов, рефераты по темам, выполнение лабораторных работ, комплект экзаменационных вопросов
	Знает:	3-2. Воспроизводит теоретические обоснования для решения учебнопрактических задач.	УО, КР, К, Р, Э, 2 сем.	Вопросы для проведения контрольных работ, коллоквиумов и устных опросов, рефераты по темам, выполнение лабораторных работ, комплект экзаменационных вопросов
	Умеет:	У-1. Объясняет сущность основных понятий и законов естественнонаучных дисциплин.	Р, Э, 2 сем.	Вопросы для проведения контрольных работ, коллоквиумов и устных опросов, рефераты по темам, выполнение лабораторных работ, комплект экзаменационных вопросов
		У-2. Применяет полученные знания		Вопросы для
		для решения учебно-практических	Р, Э, 2 сем.	проведения

		задач.		контрольных работ, коллоквиумов и устных опросов, рефераты по темам, выполнение лабораторных работ, комплект экзаменационных вопросов
В	Владеет:	В-1. Выбирает методы решения учебно-практических задач	УО, КР, К, Р, Э, 2 сем.	Вопросы для проведения контрольных работ, коллоквиумов и устных опросов, рефераты по темам, выполнение лабораторных работ, комплект экзаменационных вопросов

^{*} Форма контроля: Э – экзамен, З – зачет, УО-устный опрос, К- коллоквиум, Р- реферат, КР – контрольная работа. Период проведения – указывается семестр обучения. Ячейка заполняется следующим образом, например: Э, 4-й сем.

2. Показатели и критерии оценивания сформированности компетенций на данном этапе их формирования

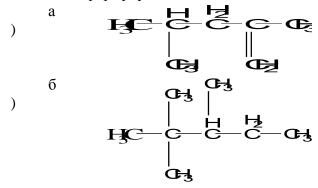
При наличии в учебном плане экзамена по дисциплине, дифференцированного зачета, курсовой работы (проекта), отчета по результатам выполнения НИР, оцениваемых по четырехбалльной шкале:

Шифр	Поокт	NATITODI I		Критерии с	оценивания	
компетенции		оипторы етенции	«неудовлетво	«удовлетвор.	«хороший	«отличный
компотонции	ROMIN	Степции	р. ответ»	ответ»	ответ»	ответ»
СК-1.	г е а Знает: с	естественнон аучной цисциплины, опирающиеся на базовые	Не перечисляет и не формулирует законы природы, относящиеся к естественно-	перечисляет основные законы и понятия	3-1. Цитирует основные законы и понятия естественнона учной дисциплины, опирающиеся на базовые знания.	формулирует законы и понятия естественнона учной дисциплины, выходящие за рамки

		3-2. Воспроизвод ит теоретически е обоснования для решения учебно-практических задач.	основных учебно – практических задач.	_	выполняет основные требования к решению и оформлению учебно-практических залач	3-2. Приводит аргументы в пользу выбора тех или иных методов решения в учебно- практической деятельности.
V		У-1. Объясняет сущность понятий и законов естественнон аучных дисциплин.	Не объясняет сущность законов и понятий естественно - научных дисциплин.	У-1. Объясняет сущность основных понятий и законов естественнона учных дисциплин.	деятельности.	У-1. Применяет полученные знания для решения проблемы в междисципли нарных контекстах, связанных с их областью изучения.
y		У-2. Применяет полученные знания для решения учебно- практических задач.	Не соблюдает основные требования и правила оформления решения учебно — практических задач.	У-2. Выполняет основные требования к решению и оформлению учебно-практических задач.	основанные на взаимосвязи теории с учебно-	·
В	ладеет:	В-1. Выбирает методы решения учебно- практических задач.	наиболее эффективных методов решения учебно –	решения учебно- практических	В-1. Выбирает наиболее эффективные методы решения учебно-практических	В-1. Основываясь на теоретических знаниях, обосновывает выбор методов для решения учебно-практических задач.

3. Оценочные средства

По нижеприведенной схеме приводятся типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих сформированность компетенций на данном этапе (см. таблицу 1).


3.1. Вопросы для проведения контрольных работ по темам

Tema 1 Теоретические основы органической химии. Строение, классификация и номенклатура органических соединений.

- 1. Напишите структурные формулы:
- 2 метилбутен -1; 2 метилбутен -2; 3 метилбутен -1.

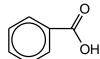
Изомерами какого углеводорода они являются?

- 2. Напишите формулы изомеров пентадиена и укажите типы связи (кумулированные, изолированные, сопряженные).
- 3. Напишите структурные формулы всех этиленовых углеводородов состава C_5H_{10} , назовите их.
- 4. Напишите структурные формулы всех этиленовых углеводородов состава C_6H_{12} , назовите их.
- 5. Сколько изомеров имеет гептан? Напишите структурные формулы этих изомеров, назовите их.
 - 6. Какие из перечисленных соединений являются изомерами:
 - а) 2-метилгексан, б) 3-метилгептан, в) 3-этилгексан, г) 2,2-диметилгептан,
 - д) 2,4-диметилгексан.
- 7. Сколько может быть углеводородов, содержащих третичный углеродный атом у пентана, у гексана?
 - 8. Напишите формулы всех изомеров состава C_6H_{10} , назовите их.
- 9. Напишите структурные формулы изомеров гептана содержащих два третичных углеродных атома. Назовите их.
- 10. Напишите структурные формулы изомеров циклоалканов состава C_5H_{10} . Назовите их.
- 11. Напишите структурную формулу и его химическую формулу, укажите к какому гомологическому ряду относится данный углеводород:
 - а) 2,3 диметилпентан
 - б) 2 метилбутадиен 1,3
 - в) 2 метилбутен 1
 - Γ) 3 метилбутин 1
 - д) 3 метилпентан
 - е) 2,2,3 триметилпентан
 - ж) 2 этилгексин 1
 - 3 метилгексин 1
 - и) 3.4 диметил-3 этилгексен 1
 - к) 3,4 диметилгексадиен 1,5
- 12. Дайте название следующему веществу, подчеркните вторичные атомы углерода. Напишите формулу его гомолога:

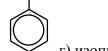
Какой тип реакции (замещения или присоединения) характерен для этого соединения. Напишите уравнение реакции с хлором.

- 13. Составьте уравнение реакции гидрирования следующего соединения, назовите продукт реакции:
 - а) 2 метилпентен 1
 - б) 2,3диметилбутен 1
 - в) 2 метилпентен 2
 - г) бутадиен 1,3
 - д) 2 метилпропен 1

- e) 4,4 диметилпентен 2
- ж) 2,3 диметилбутен 2
- 3) 2,3 диметилбутадиен 1,3
- и) 2,4 диметилгексен -3
- κ) 2,3 дихлорпентен 1
- л) гексен 2
- м) бутин 1
- 14. Напишите уравнения реакций, подтверждающие химические свойства на примере вещества:
 - а) бутин 1
 - б) бутин 2
 - в) пентин 1
 - г) пентин 2
 - д) пропин


Какая реакция называется реакцией Кучерова?

- 15. Напишите уравнения реакций, подтверждающие химические свойства алканов на примере:
 - а) 2 метилпропана
- б) 2 метилпентана,
- в) 2,3 диметилбутана, г) бутана
- д) 2,2 диметилбутана.
- 16. Напишите уравнения реакций, подтверждающие химические свойства алкенов с


 - Γ) пентен 2 , д) 2метилбутен 1.
- 17. Напишите уравнения реакций, подтверждающие химические свойства ароматических углеводородов с:
 - а) метилбензолом, б) О диметилбензолом,
 - в) этилбензолом, г) О метилэтилбензолом.
 - 18. Химические свойства бензола.

На какие группы делятся все заместители по характеру своего направляющего действия? Исходя из бензола, получите:

- а) *м* бромнитробензол
- б) o и n бромнитробензол.
- 19. В какой последовательности надо проводить реакции хлорирования и нитрования, чтобы из бензола получить 1хлор – 2,4 динитробензол? Напишите уравнения реакций.
 - 20. Напишите уравнения мононитрования:
 - а) этилбензола б) толуола (метилбензола)

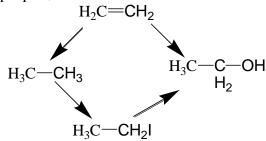
- в) бензойной кислоты
- г) нитробензола д) фенола. Назовите продукты реакции.
- 21. Напишите уравнения реакций превращений толуола в
- 2нитро 1метилциклогексан.
- 22. Напишите уравнения реакций сульфирования бензола (с одной и двумя молями серной кислоты). Назовите продукты реакции.
 - 23. Какие вещества получатся при сульфировании:

- а) этилбензола, б) нитробензола в) фенола
- г) изопропилбензола
- 24. Напишите уравнение реакции окисления раствором перманганата калия:

- а) пропена, б) толуола, в) бутен -2, г) о диэтилбензола, д) м диметилбензола,
- е) пентен -1, ж) гексен -2.

Тема 2. Типы и механизмы реакций в органической химии

- Дать определение реакции бромирования. Записать её схему на примере вещества 2,3 диметил бутен- 1. Назвать полученные вещества.
- Дать определение реакции хлорирования. Записать её схему на примере вещества 2,2 диметил бутен- 2. Назвать полученные вещества.
- Дать определение реакции дегидробромирования. Записать её схему на примере вещества 2,3 диметил, 1-бромбутан. Назвать полученные вещества.
- Дать определение реакции гидробромирования. Записать её схему на примере вещества 2,3 диметил бутен- 1. Назвать полученные вещества.
- Дать определение реакции гидратации. Записать её схему на примере вещества 2 метил бутен-2. Назвать полученные вещества.
- Дать определение реакции дегидрохлорирования. Записать её схему на примере вещества 2 метил, 3-хлор бутан. Назвать полученные вещества.
- Дать определение реакции дегидратации. Записать её схему на примере вещества 2 метил бутанол 1. Назвать полученные вещества.
- Дать определение реакции бромирования. Записать её схему на примере вещества 2,2,3 триметил пентан. Назвать полученные вещества.
- Дать определение реакции гидрирования. Записать её схему на примере вещества 3,3 диметил бутин- 1. Назвать полученные вещества.
- Дать определение реакции дегидрирования. Записать её схему на примере вещества 2,3
 диметил бутен- 1. Назвать полученные вещества.
- Дать формулировку правила Марковникова. Записать реакцию гидробромирования на примере 3,4 диметил пентен 1. Назвать полученные вещества.
- Дать формулировку правила Зайцева. Записать реакцию бромирования на примере 3,4 диметил пентен 1. Назвать полученные вещества.
- Дать формулировку правила Зайцева. Записать реакцию бромирования на примере 3,4 диметил пентан. Назвать полученные вещества.
- Дать формулировку правила Марковникова. Записать реакцию гидратации на примере 3,3 диметил пентен 2. Назвать полученные вещества.
- Дать определение реакции гидририрования. Записать реакцию гидробромирования на примере 3,4 диметил пентен 1. Назвать полученные вещества.
- Дать определение реакции дегидририрования. Записать реакцию гидрохллорирования на примере 2,3,4 триметил пентен 2. Назвать полученные вещества.
- Дать определение реакции дегидриратации. Записать реакцию гидроиодирования на примере 3,3 диметил пентен 2. Назвать полученные вещества.
- Дать определение реакции нитрования. Записать реакцию нитрования на примере 2,3,3 триметил пентан. Назвать полученные вещества.
- Дать определение реакции нитрования. Записать реакцию нитрования на примере 2-метил пентан. Назвать полученные вещества.
- Дать определение реакции Вюрца. Записать реакцию нитрования на примере 2,2,3-триметилгептан. Назвать полученные вещества.
- Дать определение реакции Вюрца. Какое вещество получится при проведении этой реакции с хлорэтаном? Записать уравнение реакции.
- Дать определение реакции Вюрца. Какое вещество получится при проведении этой реакции с 1-хлорпропаном? Записать уравнение реакции.
- Дать определение реакции Вюрца. Какое вещество получится при проведении этой реакции с 2-хлорпропаном? Записать уравнение реакции.
- Реакция Кучерова. Записать её на примере бутина -2.


- Реакция Кучерова. Записать её на примере бутина -1.
- Дать определение реакции дегидрирования. Записать её на примере 2,3 диметил бутен-1. Назвать получившиеся вещества.

Коллоквиум 1. Тема Углеводороды. Алканы, циклоалканы, алкены, алкадиены, алкины, арены: изомерия, номенклатура, строение, способы получения и химические свойства.

- 1. Гомологический ряд алкенов. Гомологическая разность. Изомерия и номенклатура алкенов.
- 2. Изобразите структуры алкенов: 2-бутен, 2-метилпропен, 2-метил,3-гексен, 4,4-диметил,2-пентен.
- 3. Строение этилена. Гибридизация атома углерода в алкенах. Образование π-связи и σ-скелета. Приведите определения σ- и π-связей, примеры органических и неорганических соединений с такими связями, примеры соединений, содержащих: а) только σ-связи, б) σ- и π-связи.
- 4. Геометрическая изомерия алкенов. Причины возникновения и признаки возможности наличия цис-транс-изомеров.
- 5. Приведите структуры цис- и транс-изомеров для 2-метил, 2-бутена, 2-пентена и 2-гексена.
- 6. Номенклатура алканов. Тривиальные названия, названия по рациональной и систематической (IUPAC) номенклатуре.
- 7. Изомерия алканов. Примеры изомеров.
- 8. Конформации и конформеры. Заслоненные, затормоенные, скошенные конформации (конформеры). Проекционные формулы конформеров.
- 9. Изобразите структуры и дайте названия всех соединений C_5H_{12} .
- 10. Дайте названия структурам C_6H_{14} по рациональной и систематической (IUPAC) номенклатурам. Определите в указанных выше соединениях первичные, вторичные, третичные и четвертичные атомы углерода.
- 11. Природные источники алканов.
- 12. Назовите соединение, получаемое при взаимодействии металлического натрия и 2-хлорпропана.
- 13. Назовите соединения, получаемые при взаимодействии металлического натрия со смесью хлорэтана и 2-хлорпропана.
- 14. Реакционная способность алканов. Типы реакций, наиболее характерных для них.
- 15. Гомологический ряд алкинов. Номенклатура, виды изомерии.
- 16. Структура тройной связи в молекуле ацетилена. Гибридизация атома углерода, Образование σ и π -связей.
- 17. Сопоставьте характеристики одинарной, двойной и тройной связи С-С (длина связи, энергия связи, геометрия валентных орбиталей). Объясните наблюдаемые явления, в том числе наличие или отсутствие цис/транс-изомеров.
- 18. Объясните изменение кислотных свойств в ряду этан-этилен-ацетилен.
- 19. Напишите уравнения реакций взаимодействия 1,2-дибромбутана и 1,1-дибромбутана со спиртовым раствором щелочи.
- 20. Приведите структурные формулы дигалогеналканов, необходимых для синтеза а) пропилацетилена, б) метилизопропилацетилена.
- 21. Напишите схемы получения а) 2-бутина из 2-бутена, б) 1-пентина из 1-пентанола.
- 22. Приведите схемы превращения 4-метил,1-пентена в 4-метил,2-пентин и 1-бутанола в 2-бутин.
- 23. Дайте название алкину, который образуется из 2,2,3,3-тетрахлорпентана.
- 24. Изомерия и номенклатура диенов. Классификация диенов.

Тема 3. Спирты. Фенолы. Классификация, изомерия, номенклатура.

- 1. Напишите все возможные изомеры для бутилового спирта C_4H_9OH и назовите их по международной номенклатуре.
- 2. Напишите уравнение реакции образования алкоголята при взаимодействии изо пропилового спирта с калием.
- 3. Напишите структурную формулу соединения состава C₄H₉OH, если оно реагирует с металлическим натрием с выделением водорода, а при окислении образует альдегид.
- 4. Напишите структурную формулу 1,2-этандиола.
- 5. Выведите формулы всех изомерных фенолов и ароматического спирта состава С₇H₈O.
- 6. Какой спирт образуется при действии водного раствора щелочи на йодистый изопропил? Напишите уравнение реакции.
- 7. Что получится при нагревании до 140 °C концентрированной серной кислоты со смесью метилового и изопропилового спиртов? Напишите уравнение реакции.
- 8. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

9. Назовите спирт по международной номенклатуре:

- 10. Напишите устойчивые изомеры непредельных спиртов состава С₄H₇OH.
- 11. Какой спирт получается в результате реакции гидратации 1-бутена? Напишите уравнение реакции.
- 12. При пропускании паров спирта над нагретым катализатором (медью или серебром) происходит дегидрирование. Напишите уравнение реакции дегидрирования этилового спирта.
- 13. Как на основании химических реакций различить следующие вещества: 1-пропанол и 2-пропанол?
- 14. Напишите структурную формулу 2-пропанола.
- 15. Напишите структурные формулы всех изомерных фенолов состава С₇H₈O₂.
- 16. Получите 2-метил-2-бутанол, используя реакцию гидратации соответствующего алкена.
- 17. Напишите уравнение реакции между уксусной кислотой и 2-бутанолом. Назовите образующееся соединение. Как называется данная реакция?
- 18. Напишите структурные формулы изомерных двухатомных спиртов, имеющих состав $C_4H_{10}O_2$.
- 19. Напишите уравнения реакций получения этилового спирта известными Вам способами.
- 20. Напишите схему реакции межмолекулярной дегидратации, протекающей при пропускании изопропилового спирта над катализатором Al_2O_3 .
- 21. Пропен обработали йодоводородом и на полученный продукт подействовали водным раствором гидроксида калия. Назовите вещества и запишите соответствующие уравнения реакций.
- 22. Приведите структурную формулу 1,3-пропандиола.
- 23. Напишите структурные формулы всех изомерных ароматических спиртов состава $C_6H_6O_3$

- 24. Каким образом можно получить гликоль из CH₂=CH-CH₂-CH₃? Приведите уравнение реакции и назовите исходные вещества и продукты реакции.
- 25. Из каких двух изомерных спиртов состава C_5 можно получить 2-метил-2-бутен? Напишите уравнения реакций.
- 26. Как установить, в какой пробирке находится этанол, а в какой водный раствор фенола?
- 27. Напишите структурную формулу 2,3-диметил-3-гексанола.
- 28. Напишите все возможные изомеры непредельных спиртов состава C₅H₉OH. Среди них укажите неустойчивые и дайте им названия.
- 29. Какой спирт получается в результате реакции гидратации 2-бутена? Приведите уравнение реакции.
- 30. Какие соединения образуются при взаимодействии глицерина с одной, двумя и тремя молекулами азотной кислоты? Напишите реакции.
- 31. Как различить глицерин, фенол и этиловый спирт? С помощью, каких реакций можно показать, что где находится?
- 32. Назовите спирт по международной номенклатуре:

$$H_3C$$
 CH_2 CH_2 CH_3C CH_2 CH_2 CH_2 CH_3

- 33. Напишите структурные формулы спиртов:
- а) винилового спирта; б) 1-пропен-2-ол; в) 2-пропен-1-ол; г) 2-пентен-2-ол. Который из них устойчив и может быть получен в свободном виде? Почему не существуют в свободном виде три других спирта? Что с ними происходит в момент образования? Напишите схемы превращений?
- 34. Какой спирт образуется при действии водного раствора щелочи на 1-хлор-3-метилбутан? Напишите уравнение реакции.
- 35. Напишите реакцию окисления вторичного бутилового спирта. Назовите продукт реакции.
- 36. Как химическим путем установить, в какой пробирке содержится водный раствор глицерина, а в какой фенола? Ответ подтвердите уравнениями реакций.
- 37. Напишите структурную формулу 2 метил-2-пропанола.
- 38. Сколько бутиловых спиртов может образоваться из этиленовых углеводородов состава C_4H_8 при их гидратации с соблюдением правила В.В. Марковникова? Приведите уравнения реакций.
- 39. Каким образом можно получить гликоль из CH₃—CH=CH— CH₃? Приведите уравнения реакций.
- 40. Напишите уравнение реакции между пропионовой кислотой и пропиловым спиртом. Назовите образующееся соединение. Как называется данная реакция?
- 41. Напишите получение диэтилового эфира, исходя из ацетилена.
- 42. Назовите спирт по международной номенклатуре:

$$H_2C = C - C - CH_3$$

- 43. Напишите структурные формулы всех изомерных фенолов состава С₆H₆O₂.
- 44. Какой алкен надо взять для получения третичного бутилового спирта

$$H_3C$$
 CH_3

Напишите уравнение реакции.

45. Глицерин, взаимодействуя с гидроксидом меди, образует глинерат меди. Напишите уравнение этой реакции.

46. Как осуществить превращения:

$$H_3C-CH_3 \longrightarrow HC \equiv CH \longrightarrow H_2C = CH_2 \longrightarrow H_3C-CH_2CI \longrightarrow H_3C-CH_2CI$$

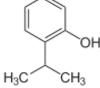
- 47. Напишите все возможные изомеры для пропилового спирта C_3H_7OH и назовите их по международной номенклатуре.
- 48. Получите вторичный бутиловый спирт, используя реакцию гидратации соответствующего алкена.
- 49. При пропускании паров спирта над нагретым катализатором (медью или серебром) происходит дегидрирование. Напишите уравнение реакции дегидрирования изопропилового спирта.
- 50. Продукт дегидратации 2-пентанола был окислен разбавленным раствором перманганата калия (реакция Е.Е.Вагнера). Полученное соединение обработано гидроксидом меди (II). Напишите уравнения реакций и назовите все соединения.
- 51. Назовите спирт по международной номенклатуре:

- 52. Напишите формулы следующих двухатомных спиртов: а) метандиол; б) 1,2-этандиол; в) 1,1-этандиол; г) 1,3-пропандиол; д) 1,1-пропандиол; е) 2,2-пропандиол; ж) 2,3-диметил-2,3-бутандиол; з) 1,5-пентандиол. Какие из них неустойчивы и в свободном виде не существуют? Что с ними происходит в момент образования? Напишите схемы превращений.
- 53. Из пропилена (продукта крекинга нефти) получают изопропиловый спирт (2-пропанол), а из него ацетон. Напишите уравнения реакций.
- 54. Какие соединения получаются при внутримолекулярной дегидратации метил-1,4-бутандиола о присутствие кислых катализаторов?
- 55. Каким путем этиловый спирт можно превратить в этиленгликоль? Напишите уравнения соответствующих реакций.
- 56. Приведите структурную формулу 2,3,4-триметил-3-пентанола.
- 57. Напишите структурные формулы вторичных и третичных спиртов состава $C_6H_{13}OH$.
- 58. Какой спирт образуется при действии водного раствора щелочи на 3-иод-2-метилпентан. Напишите уравнение реакции.
- 59. Какие соединения можно получить при взаимодействии этилового спирта с серной кислотой в различных условиях?
- 60. Назовите спирт по международной номенклатуре:

- 61. Изобразите структурные формулы всех простых эфиров общей формулы $C_4H_{10}O$. Каким образом эти эфиры можно получить из соответствующих спиртов?
- 62. Напишите уравнения реакций, лежащих в основе технических методов получения этилового спирта.
- 63. Напишите уравнение реакции внутримолекулярной дегидратации следующего спирта

Назовите образующееся соединение.

64. Напишите уравнения реакций, которые надо провести для осуществления следующих превращений:


уксусный альдегид \rightarrow этанол \rightarrow этилен \rightarrow ацетилен \rightarrow уксусный альдегид.

- 65. Напишите структурную формулу 1,4-бутандиола.
- 66. Напишите все возможные изомеры для амилового спирта $C_5H_{11}OH$.
- 67. Получите 2-пентанол, используя реакцию гидратации соответствующего алкена.
- 68. Напишите уравнение реакции между бутановой кислотой и изопропиловым спиртом. Назовите образующееся соединение. Как называется данная реакция?
- 69. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1-пропанол \rightarrow 1-бромпропан \rightarrow н-гексан \rightarrow бензол \rightarrow хлорбензол.

70. Назовите спирт по международной номенклатуре

71. Тимол - антисептик, применяется при кишечных заболеваниях. К какому классу органических соединений он относиться:

CH₃

- а) ароматический спирт;
- б) фенол.

Какие типы химических реакций для него характерны?

- 72. Напишите уравнения реакций получения этиленгликоля из этилена несколькими способами.
- 73. Напишите реакцию окисления 2-метил-1-пентанола.
- 74. Напишите структурную формулу 2-метил-2-бутанола.
- 75. Напишите структурные формулы изомерных двухатомных спиртов, имеющих состав $C_5H_{12}O_2$.
- 76. Какой спирт образуется в результате реакции гидратации 2-метил, 2-бутена? Напишите уравнение реакции.
- 77. Напишите схему внутримолекулярной дегидратации этилового спирта. Назовите образующееся соединение.

Тема: Альдегиды и кетоны. Строение, свойства, изомерия и номенклатура.

1. Дайте название по международной номенклатуре веществу, имеющему строение:

- 2. Выведите структурные формулы кетонов состава $C_5H_{10}O$.
- 3. А.М.Бутлеров получил муравьиный альдегид гидролизом дихлорметана. Напишите уравнение этой реакции. Какими другими способами можно получить формальдегид? Напишите уравнения известных вам реакций.
- 4. Как будет действовать на пропионовый альдегид этанол в присутствии хлористого водорода?
- 5. 2-метил-3-пентанол окислить раскаленным оксидом меди (II) Полученный продукт ввести во взаимодействие
 - а) с гидросульфитом натрия;
 - б) с гидроксиламином;

Записать уравнения реакций.

- 6. Напишите структурную формулу 2-метил-гексаналя.
- 7. Укажите, у какого соединения в реакциях нуклеофильного присоединения более реакционноспособна карбонильная группа: у этаналя, пропанона.
- 8. Какое карбонильное соединение получается при окислении 2-гексанола. Приведите схему реакции.

- 9. Какие, из четырех изомерных спиртов состава С₄Н₉ОН можно получить восстановлением соответствующих альдегидов и кетона? Напишите уравнения реакций. Какой спирт таким путем получить нельзя?
- 10. Напишите уравнения реакций, которые надо провести для осуществления следующих превращений:

11. Дайте название по международной номенклатуре веществу, имеющему строение:

- 12. Выведите структурные формулы непредельных альдегидов состава C_4H_6O . Какое из написанных соединение называется кротоновым альдегидом? Метакриловым альдегидом?
- 13. Почему из ацетилена по реакции М.Г.Кучерова образуется уксусный альдегид, а из гомологов алкинов получаются только кетоны?
- 14. Напишите уравнения реакций альдольной и следующей за ней кротоновой конденсации уксусного альдегида.
- 15. Напишите структурную формулу 2-метил-бутаналя.
- 16. Ванилин вкусовое вещество ванильных стручков. К каким классам органических соединений относится ванилин?
 - а) альдегид; б) кетон; в) спирт; г) фенол; д) простой эфир;

Укажите реагенты с которыми это вещество реагирует по карбонильной группе:

- он а) гидроксиламин, б) окислитель, в) HCl, г) H-CN. Запишите уравнения реакций.
- 17. Из каких спиртов можно получить метаналь и этаналь. Приведите схемы реакций.
- 18. Как можно получить этилпропилкетон (3-гексанон), имея пропиловый спирт и все необходимые неорганические вещества? Напишите уравнения реакций.
- 19. Дайте название по международной номенклатуре веществу, имеющему строение:

аите название п
$$CH_3$$
 O $H_2C-C-CH_2$ CH_3 CH_3

- 20. Выведите структурные формулы кетонов состава $C_6H_{12}O$.
- 21. Напишите схему реакции, при которой путем окисления спирта, с тем же углеродным скелетом, получается ацетон (диметилкетон)?
- 22. Определите строение соединения состава C_3H_6O , если известно, что при каталитическом гидрировании оно присоединяет водород, а при нагревании его с гидроксидом меди (II) образуя осадок кирпично-красного цвета. Напишите все уравнения реакций.
- 23. Напишите структурную формулу 3-метил-2-бутанона.
- 24. Какое соединение с большей скоростью вступает в реакцию нуклеофильного присоединения: этаналь и пропанон и почему?
- 25. Напишите уравнения реакций действия гидроксиламина NH_2 —OH и гидразина NH_2 NH_2 на 2-метилпропаналь.
- 26. Определите строение соединения состава C_3H_6O если известно, что оно реагирует с гидроксиламином, образуя оксим, а при католитическом гидрировании превращается в изопропиловый спирт. Напишите уравнения реакций.
- 27. Дайте название по международной номенклатуре веществу, имеющему строение:

- 28. Напишите структурные формулы изомерных альдегидов состава $C_5H_{10}O$.
- 29. Напишите уравнения реакций действия гидразина и гидроксиламина на 2 метилпропаналь.
- 30. Как можно получить метилпропилкетон (2-пентанон) из соответствующего ацетиленового углеводорода. Напишите уравнение реакции.
- 31. Присоединение галогеноводорода к акриловому (пропеновому) альдегиду протекает против правила В.В. Марковникова. Напишите уравнение реакции. Назовите продукт.
- 32. Какими реакциями можно отличить бутаналъ от бутанола, ацетон от изомерного ему пропаналя?
- 33. Напишите структурную формулу 2-метил, 3-этил, 3-ен-5-фенил-гексаналь.
- 34. Составьте уравнения реакций, описывающие получение ацетона из пропена.
- 35. Напишите последовательно уравнения реакций альдольной и последующей кротоновой конденсации пропионового альдегида.
- 36. Осуществите следующие превращения:

$$CH_4 \longrightarrow CH_3\text{-}CI \longrightarrow CH_3\text{-}OH \longrightarrow HO$$

37. Дайте название по международной номенклатуре веществу, имеющему строение:

- 38. Выведите структурные формулы изомерных альдегидов состава $C_7H_{14}O$ с 5-ю атомами углерода в главной цепи.
- 39. Напишите схему реакции образования карбонильного соединения

при действии водного раствора щелочи на 1,1-дихлор-2-метил-бутан. Назовите образующиеся соединения.

- 40. Получить полуацеталь и полный ацеталь в реакции: уксусный альдегид + 1-пропанол.
- 41. На 2-бутин подействовать водой в присутствии солей двухвалентной ртути (реакиия Л.Г.Кучерова). Полученное соединение ввести во взаимодействие: а) с водородом; б) с циановодородной (синильной) кислотой; в) с гидразином; г) с сильным окислителем. Записать уравнения соответствующих реакций, назвать классы образовавшихся вешеств.
- 42. Напишите структурную формулу 2,3-диметилбутаналя.
- 43. У какого альдегида в реакциях нуклеофильного присоединения более реакцконноспособна карбонильная группа у

- 44. Известно, что альдегиды можно получать с помощью различных реакций: окислением спиртов, дегидрированием спиртов, гидролизом дигалогенпроизводных предельных углеводородов, каталитическим окислением углеводородов. Какие из перечисленных способов пригодны для получения муравьиного альдегида?
- 45. Напишите уравнение окисления пропионового альдегида гидроксидом меди (II).

46. Осуществите следующие превращения:

уксусный альдегид — → этилен — → ацетилен — уксусный альдегид Дайте название по международной номенклатуре веществу, имеющему строение:

$$H_3C$$
— C — CH_3
 H_3C — CH
 H_2C — OH

- 47. Напишите структурные формулы изомерных альдегидов состава С₄H₈0.
- 48. Какое соединение получится при сухой перегонке кальциевой соли смеси муравьиной и пропионовой кислот.
- 49. Какая реакция происходит при растворении формальдегида в воде? Рассмотрите механизм процесса. Можно ли выделить продукт этой реакции? Как применяется формальдегид (формалин) в сельском хозяйстве?
- 50. Получите метилацетилен из пропаналя.
- 51. Напишите структурную формулу пара-нитробензальдегида.
- 52. Напишите структурные формулы изомерных альдегидов состава $C_8H_{16}O$ с 5-ю атомами углерода в главной цепи.
- 53. Какое соединение получится при действии синильной (циановодородной) кислоты на пропионовый альдегид? Назовите образующееся соединение.
- 54. Как можно получить 2-бутанон, имея ацетилен и все необходимые неорганические вещества. Напишите уравнения реакций.
- 55. Дайте название по международной номенклатуре веществу, имеющему строение:

$$H_3C$$
 H_2 H_3C H_3C H_3C H_4 H_5 H_5

- 56. Приведите структурные формулы непредельных альдегидов состава C₅H₈O.
- 57. Из какого дигалогенпроизводного можно получить 2,2-диметил-бутаноль. Напишите уравнение реакции.
- 58. Для каких из приведенных ниже альдегидов возможны реакции альдольной и кротоновой конденсации: а) уксусный; б) диметилуксусный; в) триметилуксусный. Напишите уравнения возможных реакций. Объясните, почему та или иная реакция невозможна.
- 59. Осуществить следующую схему превращений:

$$CH_4 \longrightarrow H_3C \longrightarrow H_3C \longrightarrow H_3C \longrightarrow H_2$$

Напишите соответствующие уравнения реакций.

- 60. Напишите структурные формулы:
 - альдегида эмпирической формулы С₄H₈O, a)
 - кетона эмпирической формулы С₅H₁₀O, б)

Назовите их по международной номенклатуре.

61. Известно, что реакционная способность альдегидов и кетонов уменьшается в ряду:

$$H$$
 H_3C H_3C H_3C

Объясните это явление с электронной точки зрения.

- 62. Какой кетон получится в результате реакции гидратации по Кучерову 1-бутина. Напишите уравнение этой реакции.
- 63. Напишите уравнения реакций восстановления в спирты: валерианового альдегида и метилэтилкетона. Назовите исходные и получившиеся вещества по международной номенклатуре.
- 64. Определите строение соединения состава $C_5H_{10}O$, если известно, что оно не реагирует с аммиачным раствором оксида серебра, а при каталитическом гидрировании образует 3-пентанол, Напишите уравнение реакции.
- 65. Дайте название по международной номенклатуре веществу, имеющему строение:

- 66. Напишите структурные формулы изомерных альдегидов состава $C_8H_{16}O$ с 4-мя атомами углерода в главной цепи.
- 67. Какое карбонильное соединение получится при окислении 3-метил-1-бутанола. Приведите схему реакции.
- 68. Напишите уравнения реакций действия гидроксиламина NH_2 —OH. и гидразина NH_2 — NH_2 на метилэтилкетон.
- 69. Напишите структурную формулу соединения C_4H_8O , которое при действии синильной кислоты дает оксинитрил; а при восстановлении образует изобутиловый спирт. Запишите уравнения соответствующих реакций.
- 70. Напишите структурную формулу 2-пентанона.
- 71. Напишите структурные формулы всех изомерных карбонильных соединений ароматического ряда состава C_8H_8O (4 изомера).
- 72. Напишите схему реакции, при которой путем окисления спирта с тем же углеродным скелетом получается 2-метилбутаналь. Назовите исходный спирт.
- 73. Определите строение вещества состава C_4H_8O , если известно, что при восстановлении оно образует 2-метил-1-пропанол, а при окислении 2-метилпропановую кислоту.
- 74. Дайте название по международной номенклатуре веществу, имеющему строение:

- 75. Приведите структурные формулы непредельных кетонов состава C_5H_8O .
- 76. Напишите схему реакции образования карбонильного соединения при действии водного раствора щелочи на 3,3-дихлор-2-метилпентан. Назовите образующееся соединение.
- 77. Какое соединение получится при действии синильной (циановодородной) кислоты на метилэтилкетон. Назовите образующееся соединение.
- 78. Напишите схему превращения уксусного альдегида в 2-бромбутан.
- 79. Напишите структурную формулу 2,3-диметил-3-гептепаля.
- 80. Напишите формулы кетонов, изомерных капроновому альдегиду (гексаналь).
- 81. Получится ли альдегид при окислении 2-пропанола? Напишите уравнение реакции.
- 82. Какой альдегид следует взять для того, чтобы при восстановлении получить спирт

$$H_3C$$
 H_2 H_2 H_2 H_3C H_3C H_4 H_5 H_7 H_8 H

следующего строения:

Тема. Альдегиды, кетоны. Химические свойства и способы получения ВАРИАНТ № 1

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия 2 – метил бутаналь и Ag_2O . Дать название получившемуся веществу. Указать класс к которому оно относится.

3. Приведите все возможные реакции, относящиеся к способам получения бутанон -2. Назвать исходные вещества и тип реакции которая при этом осуществляется.

ВАРИАНТ №2

1. $H_{3}C \xrightarrow{H} C \xrightarrow{H_{2}} C \xrightarrow{O} C H_{3}$

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия между веществами 2 — метил пропаналь и водород. Дать название получившемуся веществу. Указать класс к которому оно относится.

Приведите все возможные реакции, относящиеся к способам получения бутаналь - 1. Назвать исходные вещества и тип реакции которая при этом осуществляется.

ВАРИАНТ №3

1.

3.

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия 2, 2 — диметил бутаналь и водорода. Дать название получившемуся веществу. Указать класс к которому оно относится.

3. Приведите все возможные реакции, относящиеся к способам получения пропаналя. Назвать исходные вещества и тип реакции которая при этом осуществляется.

ВАРИАНТ №4

1.

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия 2, 2 диметил бутаналь и этанола. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Приведите все возможные реакции, относящиеся к способам получения пропанона. Назвать исходные вещества и тип реакции которая при этом осуществляется.

ВАРИАНТ №5

1.

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия 2, 2 диметил пропанона и водорода. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Приведите все возможные реакции, относящиеся к способам получения этаналя. Назвать исходные вещества и тип реакции которая при этом осуществляется.

ВАРИАНТ №6

1.

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия этаналь и 2 пропанол. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Приведите все возможные реакции, относящиеся к способам получения 2 метил пропаналя. Назвать исходные вещества и тип реакции которая при этом осуществляется.

ВАРИАНТ №7

1.

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия 2, 2 – диметил

пропаналь и водорода. Дать название получившемуся веществу. Указать класс к которому оно относится.

3. Запишите уравнение реакции взаимодействия 2 – метил пропаналь и гидроксиламин. К какому классу веществ относится продукт реакции.

ВАРИАНТ №8

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия 2, 2 — диметил пропаналь и водорода. Дать название получившемуся веществу. Указать класс к которому оно относится.

Запишите уравнение реакции взаимодействия 2 – метил пропаналь и гидразин. К какому классу веществ относится продукт реакции.

ВАРИАНТ №9

3.

1. $H_3C \xrightarrow{\mathsf{C}} \overset{\mathsf{C}}{\underset{\mathsf{CH}_3}{\mathsf{H}_2\mathsf{C}}} \overset{\mathsf{C}}{\underset{\mathsf{CH}_2}{\mathsf{H}_2\mathsf{C}}}$

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия 2 метил пропаналь и 2 пропанол. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Запишите уравнение реакции взаимодействия 2 метил пропаналь и фенилгидразин. К какому классу веществ относится продукт реакции.

ВАРИАНТ №10

1. $H_3C - C - C - CH_3$ $H_2C - CH_2$

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции окисления 2 метил пропанол. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Запишите уравнение реакции взаимодействия 2 метил пропаналь и гидразин. К какому классу веществ относится продукт реакции.

ВАРИАНТ №11

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия 2 метил бутаналь и гидросульфитом натрия.
- 3. Запишите уравнение реакции взаимодействия пропаналь и гидразин. К какому классу веществ относится продукт реакции.

ВАРИАНТ №12

1.

$$H_3C$$
 C C C C C C

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия пропина с водой по реакции Кучерова. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Запишите уравнение реакции взаимодействия 2 –пропанон и фенилгидразин. К какому классу веществ относится продукт реакции.

ВАРИАНТ №13

1.

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия 2 бутина с водой по реакции Кучерова. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Запишите уравнение реакции взаимодействия 2,2 дихлор пропана и воды в условиях щелочного гидролиза. К какому классу веществ относится продукт реакции.

ВАРИАНТ №14

1.

$$H$$
— C C_2H_{ϵ}

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия 1 бутина с водой по реакции Кучерова. Дать название получившемуся веществу. Указать класс к которому оно относится.
- 3. Запишите уравнение реакции взаимодействия 1,1— дихлор пропана и воды в условиях щелочного гидролиза. К какому классу веществ относится продукт реакции.

ВАРИАНТ №15

1. $H_3C - C - C - C$

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия пропина с водой по реакции Кучерова. Дать название получившемуся веществу. Указать класс к которому оно относится.

3. Запишите уравнение реакции взаимодействия 3,3 – диметил пентин - 1 и воды в условиях реакции Кучерова. К какому классу веществ относится продукт реакции.

ВАРИАНТ №16

1. H₃C—C

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия этина с водой по реакции Кучерова. Дать название получившемуся веществу. Указать класс к которому оно относится.

3. Запишите уравнение реакции окисления 3,3 – диметил пентанола - 1. К какому классу веществ относится продукт реакции.

ВАРИАНТ №17

1. $\begin{array}{c} H_2C - C \\ \downarrow \\ H_3C - CH_2 \end{array} \quad \begin{array}{c} O \\ C_2H_2 \end{array}$

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

2. Запишите уравнение реакции взаимодействия этина с водой по реакции Кучерова. Дать название получившемуся веществу. Указать класс к которому оно относится.

3. Запишите уравнение реакции окисления 2,3 – диметил пентанола - 2. К какому классу веществ относится продукт реакции.

ВАРИАНТ № 18

1. $H_3C - \begin{matrix} H \\ C \\ C \\ C \\ C \\ C \end{matrix}$ CH

Назовите изображенную структуру. К какому классу веществ оно относится? Изобразите и назовите функциональную группу этого вещества.

- 2. Запишите уравнение реакции взаимодействия этанола с металлическим калием. Дать название получившемуся веществу и указать класс к которому оно относится.
- 3. Запишите уравнение реакции окисления 2,4 диметил пентанола 1. К какому классу веществ относится продукт реакции.

Тема: Карбоновые кислоты. Оксикислоты. Изомерия, номенклатура и химические свойства.

- 1. Гомологический ряд и гомологическая разность для карбоновых кислот. Виды изомерии и номенклатуры карбоновых кислот. Тривиальные названия. IUPAC-номенклатура.
- 2. Кислотные остатки (ацилы). Структура. Номенклатура ацилов. Изобразите структурные формулы формила, ацетила, пропионила.
 - 3. Проведите синтез пропионовой кислоты следующими способами:
- а) окислением соответствующего спирта, б) окислением альдегида, в) окислением кетона, г) окислением алкена.
- 4. Напишите структурные формулы щавелевой, малоновой, метилмалоновой и адипиновой кислот, ангидрида янтарной кислоты, амида адипиновой кислоты, сукцинимида, калиевой соли кислого этилового эфира янтарной кислоты.
- 5. Назовите соединения: $HOOC\text{-}CONH_2$, $NC\text{-}(CH_2)_4\text{-}CN$ и получите их из соответствующих дикарбоновых кислот.
- 6. Приведите примеры реакций, с помощью которых можно химически различить муравьиную и уксусную кислоты.
- 7. Бифункциональные соединения. Классификация окси- и оксокислот. Номенклатура.
 - 8. Дайте названия соединениям: CH₃CH(OH)CH₂COOH, CH₂(OH)-CONH₂
- 9. Напишите структурные формулы глицеринтриолеата и глицеринтристеарата, отметьте различия в их физических свойствах и проведите реакции их гидролиза. Назовите продукты, область и механизм их применения.
- 10. Напишите структурные формулы щавелевой, малоновой, метилмалоновой и адипиновой кислот, ангидрида янтарной кислоты, амида адипиновой кислоты, сукцинимида, калиевой соли кислого этилового эфира янтарной кислоты.
- 11. Назовите соединения: $HOOC-CONH_2$, $NC-(CH_2)_4-CN$ и получите их из соответствующих дикарбоновых кислот.
- 12. Приведите структурные формулы лактида γ-оксимасляной кислоты, 2-метоксипропановой кислоты, метилового эфира α-оксимасляной кислоты.
- 13. Проведите синтез α-оксипропионовой кислоты из соответствующих соединений: а) альдегида, б) хлорпропионовой кислоты, в) аминопропионовой кислоты.
- 14. Определите, какое соединение образуется после проведения последовательных стадий: а) взаимодействие пропионовой кислоты с Ca(OH)₂, б) нагрев продукта, полученного на первой стадии, в) взаимодействие полученного соединения с HCN, г) гидролиз последнего вещества.
 - 15. Приведите реакции гликолевой кислоты с: a) PCl₅, б) HBr в) HI.

- 16. На примере изомерных оксимасляных кислот приведите примеры реакций, характеризующих отношение оксикислот к нагреванию в зависимости от расположения гидроксила. Дайте названия продуктам реакций.
 - 17. Приведите примеры простейших альдегидо- и кетокислот. Дайте им названия.
 - 18. Назовите CH₃-CH₂-OCO-CHO, CH₃CO-CH(CH₃)-COOCH₃.

Коллоквиум 2. Кислородсодержащие соединения.

1 Нижеприведенным соединениям дайте названия по номенклатуре ИЮПАК.

- 2 Напишите структурные формулы следующих соединений и дайте им название по международной номенклатуре:
 - а) метилизобутилкетон b) п-толуиловый альдегид
 - с) 2,7-диметил-2,6-октадиеналь
 - 3 Напишите структурные формулы изомерных альдегидов и кетонов общей формулы $C_5H_{10}O$ и назовите их.
- 4 Расположите эти соединения в ряд по увеличению реакционной способности в реакциях нуклеофильного присоединения.

5 Из толуола получите 2,4-динитробензальдегид.

6Напишите формулы структурные формулы кетонов если продуктами их окисления являются 2,2 – диметилпропановая и пропановая кислоты.

7 Напишите формулы структурные формулы кетонов если продуктами их окисления являются пропановая, уксусная и 2 - метилбутановая кислоты.

8Приведите уравнения реакций и реагенты, с помощью которых можно отличить бутаналь от бутанола-1; ацетон от пропаналя?

9Напишите структурную формулу соединения состава C₉H₁₀O, которое реагирует с гидроксиламином, дает реакцию "серебряного зеркала".

- 10 Напишите структурные формулы кислот состава $C_5H_{18}O_4$ и назовите их.
- 11 Изобразите строение соединений **A**, **Б**, **B** на схеме превращений.

$$H_3C$$
— C — C H $=$ C H_2 \longrightarrow C H $=$ C H_2 \longrightarrow C

- 12 Напишите механизм этерификации уксусной кислоты метиловым спиртом в кислой среде.
- 13 Каталитическим дегидрированием какого спирта можно получить альдегид? Приведите уравнения реакций.
- 14 Продукт окисления 2-бутена перманганатом калия при комнатной температуре в нейтральной среде содержит два атома кислорода. Приведите структуру молекулы этого соединения.
- 15 Сильное окисление 2-бутена перманганатом калия в кислой среде при нагревании приводит к расщеплению двойной связи. Напишите структурные формулы продуктов этой реакции.
- Определите структуру двух спиртов $C_5H_{11}OH$, которые превращается при дегидратации в один и тот же алкен с изомерной структурой.
- 17 Спирт $C_6H_{14}O$ при дегидратации превращается в алкен, сильное окисление которого хромовой смесью приводит к образованию единственного продукта диметилкетона.
- 18 Установите структурную формулу вещества C_4H_9Br , которое а) образует при гидролизе первичный спирт, б) про дегидробромировании и последующем гидробромировании образует третичное галогенпроизводное. Напишите уравнения реакций.
- 19 Гомологический ряд спиртов. Общая формула и гомологическая разность. Изомерия и номенклатура спиртов.
- 20 Приведите структуры 3-метил,1-бутанола, 2-метил,2,пропанола, изобутилового спирта.
- 21 Напишите схемы реакций и механизмы щелочного гидролиза бромэтана и 2- бромпропана.
- 22 Разберите механизм и приведите схему реакции кислотной гидратации пропилена.
- 23 Установите структурные формулы алкенов, которые после гидратации образуют а) 2-метил,2-бутанол, б) 2,3-диметил,2-бутанол.
- 24 Проведите превращение 2-метил, 1-пропанола в 2-метил, 2-пропанол.
- 25 2-пропанол при кислотном катализе вступает в реакции как внутри-, так и межмолекулярной дегидратации. Приведите схемы реакций и разберите их механизмы.
- 26 Превратите в двухстадийном синтезе 1-пропанол в 2-пропанол.
- 27 Определите структурную формулу соединения $C_4H_{10}O$, которое реагирует с металлическим натрием с выделением водорода, а при окислении образует кетон.
- 28 Приведите структурные формулы простых эфиров $C_4H_{10}O$ и дайте им названия по систематической номенклатуре.
- 29 Изомерия и номенклатура карбонильных соединений. Гомологические ряды альдегидов и кетонов.
- 30 Дайте названия всем изомерным карбонильным соединениям $C_5H_{10}O$ по рациональной и систематическим номенклатурам.

- 31 Приведите структурные формулы пропаналя, 2-пентанона, диизопропилкетона.
- 32 Проведите синтез пропаналя а) гидролизом дигалогеналкана, б) окислением спирта. Напишите уравнения соответствующих реакций.
- 33 Проведите синтез метилэтилкетона а) дегидрированием спирта, б) с использованием реакции Кучерова.
- 34 Определите, какие соединения образуются при: гидратации метилацетилена, при окислении 2-пропанола, при дегидрировании 2-бутанола.
- 35 Осуществите превращение 3-метил, 1-бутанола в 2-метилпропаналь.
- 36 Приведите схему реакций восстановления 2-бутанона и 2-метилпропаналя водородом.
- 37 Приведите схемы взаимодействия ацетона и этаналя с циановодородом (KCN).
- 38 Напишите схемы реакций ацетона с NH₂OH, NH₂-NH₂, NH₂-NH-C₆H₅ и укажите классы соединений, к которым относятся продукты реакции.
- 39 Приведите схемы реакций с участием α-водородного атома (на α-углероде) карбонильных соединений на примере этаналя или ацетона. Объясните активность этого атома и отсутствие таковой у водорода альдегидной группы. Для реакции альдольной конденсации этаналя приведите механизм реакции.
- 40 Напишите схемы окисления бутаналя и 2-бутанона и назовите продукты реакции.
- 41 Установите структуру кетона, который при окислении образует смесь муравьиной, уксусной и пропионовой кислот.
- 42 Установите строение вещества $C_5H_{12}O_2$, которое а) при окислении образует продукт $C_5H_{10}O$, реагирующий с фенилгидразином, б) при дегидратации образует продукт C_5H_{10} , который при окислении образует среди продуктов ацетон.
- 43 Гомологический ряд и гомологическая разность для карбоновых кислот. Виды изомерии и номенклатуры карбоновых кислот. Тривиальные названия. IUPAC-номенклатура.
- 44 Проведите синтез пропионовой кислоты а) окислением соответствующего спирта, б) окислением альдегида, в) окислением кетона, г) окислением алкена.
- 45 Проведите синтез метилпропионата из кислоты и спирта и разберите механизм этой реакции в условиях кислотного катализа.
- 46 Приведите схемы реакций метилпропионата с: а) водой в кислой среде, б) этанолом, в) аммиаком. Для всех реакций назовите продукты реакций..

Тема Углеводы. Строение и свойства.

- 1. Глюкоза и фруктоза дают положительную реакцию на реактив Толленса (аммиачный раствор оксида серебра). Объясните это явление и приведите уравнения реакций.
- 2. Какие соединения образуются, если дисахарид 4-(β-D-глюкопиранозил),α-D-глюкопиранозу подвергнуть исчерпывающему метилированию, и полученное при этом вещество нагреть с разбавленной соляной кислотой?
- 3. Написать проекционные формы α- и β- D-глюкопиранозы.
- 4. Напишите реакции взаимодействия 4-[β-D-галактопиранозил]-α-D-глюкопиранозы (лактозы) со следующими веществами: гидроксиламином, фенилгидразином.
- 5. При гидролизе метилированной лактозы образуется 2,3,6-триметилглюкоза и 2,3,4,6-тетраметилгалактоза. Установите на основании этих данных положение кислородного мостика, связывающего остатки гексоз.
- 6. Напишите формулы моносахаридных звеньев и схемы образования полных эфиров целлюлозы: азотнокислого и уксуснокислого.
- 7. В чем заключается явление мутаротации? Напишите схему таутомерного равновесия для D-арабинозы, используя проекционные формулы.
- 8. Напишите схему гидролиза 4-(β-D-галактопиранозил)-D-глюкозы (лактозы).

- 9. Приведите примеры реакций углеводов как спиртов и как карбонильных соединений (на примере любого углевода).
- 10. Напишите проекционные формулы моноз, эпимерных D-глюкозе и D-галактозе.
- 11. Как можно отличить по химическим реакциям: а) альдогексозу от кетогексозы; б) альдогексозу от альдопентозы? Напишите уравнения реакций.
- 12. Трегалоза (грибной сахар) не обладает восстанавливающими свойствами, а при гидролизе образует две молекулы глюкозы. Гидролиз трегалозы катализирует только α-глюкозидаза, а не β-. В цикле молекулы полученной глюкозы имеется кислородный мостик между 1-м и 5-м углеродными атомами. Напишите перспективную формулу трегалозы и дайте название дисахариду, исходя из названий остатков глюкозы.
- 13. Напишите формулы: а) метил- α -D-глюкопиранозида; б) метил- α -D-фруктофуранозида.
- 14. Окисление глюкозы различными окислителями приводит к образованию продуктов различного строения. Какие продукты образуются из этого углевода при окислении его а) бромной водой б) азотной кислотой.
- 15. Опишите различия в химических свойствах глюкозы и фруктозы.
- 16. Напишите в виде открытой и циклической форм моносахариды: L-глюкозу, L-маннозу, D-фруктозу.
- 17. Напишите уравнения реакций фруктозы: а) с синильной кислотой; б) с гидроксиламином;
- 18. Напишите структурные формулы следующих соединений: а) альдотетроза; б) кетопентоза; в) альдогексоза.
- 19. Напишите схему реакции β-D-глюкопиранозы с этиловым спиртом. К какому классу относится полученное соединение? Назовите его.
- 20. Напишите проекционные формулы стереоизомерных кетогексоз.
- 21. Напишите уравнение следующих реакций: а) окисление D-глюкозы бромной водой и азотной кислотой;
- 22. Напишите уравнения реакций гидролиза крахмала и клетчатки. Назовите промежуточные продукты гидролиза обоих веществ. Какой моносахарид является конечным продуктом гидролиза крахмала и клетчатки? Какова качественная реакция на крахмал?
- 23. Напишите схемы образования пиранозных и фуранозных α- и β-форм D-маннозы (эпимера D-глюкозы).
- 24. Используя перспективные формулы, напишите схемы образования из D-глюкозы крахмала (амилозы) и целлюлозы. Объясните различие в строении этих полисахаридов.
- 25. Напишите проекционные формулы: а) α и β -галактозы; б) α и β -фруктозы. Напишите проекционные формулы α и β -D-галактозы.
- 26. Полиоксиальдегиды и полиоксикетоны. D- и L-ряды сахаров. Стереохимия биологически значимых сахаров. Классификация сахаров.
- 27. Приведите примеры альдогексозы, альдопентозы, кетопентозы. Укажите положение карбонильной группы в природных кетозах.
- 28. Синтез и природные источники сахаров. Фотосинтез.
- 29. На примере любой альдотетрозы напишите проекционные формулы изомеров. Укажите пары энантиомеров и диастереоизомеров, изомеры D- и L-ряда.
- 30. Опишите пиранозные и фуранозные циклы на примере глюкопиранозы и фруктофуранозы и их образование.
- 31. Опишите различие между а- и β-формами глюкопиранозы.
- 32. Напишите схему реакции α-D-глюкопиранозы с диметилсульфатом и назовите продукт этой реакции. Приведите схему гидролиза полученного соединения (в

- присутствии слабой соляной кислоты) и объясните наблюдаемое направление реакции.
- 33. Назовите продукт взаимодействия глюкозы с избытком уксусного ангидрида и приведите схему реакции.
- 34. Приведите схемы реакций взаимодействия альдопентозы с гидроксиламином.

Напишите схемы образования 4-(α-D-глюкопиранозил),α-D-глюкопиранозы (мальтозы). Назовите исходные моносахариды и поясните, будет ли мальтоза реагировать с аммиачным раствором оксида серебра.

3.1.2. Методические материалы

Условия и порядок проведения текущего контроля и экзамена даны в Приложении № 2 к положению ПВД-07 «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся».

Бально-рейтинговая оценка знаний обучающихся составлена в соответствии с ПВД-07 «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся» ФГБОУ ВПО «Ивановская ГСХА имени академика Д.К.Беляева».

Текущий контроль:

В течение семестра студент индивидуально, или в группе выполняет работу над выбранными темами рефератов. По мере выполнения работы проводятся консультации с преподавателем, осуществляется подбор материала, готовится доклад и презентация. За проделанную работу студент может получить дополнительные рейтинговые баллы максимально – 10 за текст и материал реферата, и 5 – за подготовленный доклад по теме реферата. В течение семестра студенты работают согласно графику прохождения дисциплины или тематическому плану, где каждое занятие оценивается в определенное количество баллов.

График прохождения дисциплины «Органическая и физколлоидная химия» для студентов 1 курса факультета ветеринарной медицины и биотехнологии в животноводстве специальности ВЕТЕРИНАРИЯ

Дата	Тема занятия	Количество часов,
проведения		форма занятия
1 неделя	Теоретические основы органической химии.	2 часа, практическое
	Максимальное количество баллов – 3	занятие
2 неделя	Методы выделения и очистки органических	2 часа, практическое
	соединений.	занятие
	Максимальное количество баллов – 2	
3 неделя	Углеводороды. Алканы, циклоалканы, алкены,	2 часа, практическое
	алкадиены, алкины, арены: изомерия,	занятие
	номенклатура, строение, способы получения и	
	химические свойства.	
	Максимальное количество баллов – 4	
4 неделя	Коллоквиум № 1 Максимальное количество	2 часа, практическое
	баллов – 5	занятие
5-6 неделя	Спирты. Фенолы. Альдегиды и кетоны.	4 часа, лабораторно-
	Классификация, изомерия, номенклатура, методы	практическое занятие
	получения, электронное строение. Химические	
	свойства. Важнейшие представители.	
	Максимальное количество баллов – 1	
7 неделя	Карбоновые кислоты. Одноосновные предельные	2 часа, практическое
	карбоновые кислоты.	занятие
	Максимальное количество баллов – 4	

8 неделя	Коллоквиум № 2 Максимальное количество	2 часа, практическое
	баллов – 5	занятие
9 неделя	Углеводы. Ди – и полисахариды.	2 часа, практическое
	Максимальное количество баллов – 4	занятие
10-11	Липиды. Классификация липидов. Биологическая	4 часа, практическое
неделя	роль липидов. Жиры.	занятие
	Максимальное количество баллов – 3	
12 неделя	Стероиды. Строение, общая характеристика их	2 часа, практическое
	биологической роли.	занятие
	Максимальное количество баллов – 1	
13-14	Амины. Аминоспирты. Мочевина.	4 часа, практическое
неделя	Аминокислоты, физические и химические	занятие
	свойства. Белки. Образование I структуры белка.	
	Максимальное количество баллов – 2	
15 неделя	Гетероциклические соединения.	2 часа, практическое
	Максимальное количество баллов – 2	занятие
16 неделя	Энергетика и кинетика химических процессов в	2 часа, практическое
	организме.	занятие
	Максимальное количество баллов – 2	
17-	Свойства дисперсных систем и растворов	4 часа, практическое
18неделя	биополимеров.	занятие
	Максимальное количество баллов – 2	
Итого	Количество баллов – 40	36 часов

По результатам работы в течение всего семестра, посещение лекций, активность на лабораторно — практических занятиях преподаватель вправе добавить к текущему рейтингу премиальные (призовые) — максимально *5 баллов*.

Итоговая аттестация – экзамен оценивается в 40 баллов.

PЕЙТИНГ = 40 + 15 + 5 + 40 = 100 БАЛЛОВ

Критерии оценки контрольной работы

В ходе проведения контрольных работ (аудиторных и домашних) преподаватель вставляет обучающемуся отметку «зачтено», или «не зачтено», оперируя следующими критериями:

«зачтено»

Обучающийся показал знание основных положений темы учебной дисциплины, умение получить правильное решение на конкретно поставленный вопрос задания из числа предусмотренных рабочей программой.

«не зачтено»

При ответе обучающегося выявились существенные пробелы в знаниях основных положений темы учебной дисциплины, показано неумение получить правильное решение конкретной практической задачи из числа предусмотренных рабочей программой учебной дисциплины.

Критерии оценки коллоквиума «отлично», высокий уровень

Обучающийся показал прочные знания основных положений по теме коллоквиума в рамках раздела учебной дисциплины, умение самостоятельно решать практические задачи, делать обоснованные выводы.

«хорошо», повышенный уровень

Обучающийся показал прочные знания основных положений по теме коллоквиума в рамках раздела учебной дисциплины, умение самостоятельно решать конкретные практические задачи, предусмотренные рабочей программой, ориентироваться в рекомендованной справочной литературе, умеет правильно аргументировать полученные результаты.

«удовлетворительно», пороговый уровень

Обучающийся показал знание основных положений темы в пределах соответствующего раздела учебной дисциплины, умение получить с помощью преподавателя правильное решение конкретной практической задачи из числа предусмотренных в теме, знакомство с рекомендованной учебной литературой.

Критерии оценивания устного ответа на практическом занятии, семинаре

Развернутый ответ студента должен представлять собой связное, логически последовательное сообщение на заданную тему, показывать его умение применять определения, правила в конкретных случаях.

Критерии оценивания:

- 1) полноту и правильность ответа;
- 2) степень осознанности, понимания изученного;
- 3) языковое оформление ответа.

Оценка «5» ставится, если:

- 1) студент полно излагает материал, дает правильное определение основных понятий;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно с точки зрения норм литературного языка.
- «4» студент дает ответ, удовлетворяющий тем же требованиям, что и для отметки «5», но допускает 1–2 ошибки, которые сам же исправляет, и 1–2 недочета в последовательности и языковом оформлении излагаемого.
- «3» студент обнаруживает знание и понимание основных положений данной темы, но:
- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил;
- 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- 3) излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.

Оценка «2» ставится, если студент обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал. Оценка «2» отмечает такие недостатки в подготовке, которые являются серьезным препятствием к успешному овладению последующим материалом.

3.2.1. Вопросы для подготовки и проведения экзамена

- 1. Предмет органической химии. Причины выделения её в самостоятельную науку. Связь органической химии с биологией, медициной и сельским хозяйством.
- 2. Основные положения теории химического строения органических соединений А.М. Бутлерова.
- 3. Виды и типы изомерии органических соединений.
- 4. Типы органических реакций.

- 5. Классификация органических веществ.
- 6. Строение атома углерода. Типы гибридизации электронных облаков.
- 7. Гомологический ряд, номенклатура и изомерия предельных углеводородов.
- 8. Методы получения предельных углеводородов (синтез Вюрца, синтез из непредельных углеводородов и из солей карбоновых кислот). Получение и применение метана.
- 9. Физические и химические свойства предельных углеводородов.
- 10. Номенклатура и изомерия этиленовых углеводородов.
- 11. Методы получения этиленовых углеводородов. Правило Зайцева.
- 12. Химические свойства этиленовых углеводородов. Правило Марковникова.
- 13. Классификация, номенклатура и изомерия циклоалканов.
- 14. Методы получения и химические свойства циклоалканов.
- 15. Номенклатура и изомерия ацетиленовых углеводородов.
- 16. Методы получения ацетиленовых углеводородов. Ацетилен, его получение и применение.
- 17. Химические свойства ацетиленовых углеводородов. Реакция Кучерова.
- 18. Электронное строение молекулы бензола. Ароматичность.
- 19. Номенклатура и изомерия ароматических углеводородов.
- 20. Классификация и получение ароматических углеводородов.
- 21. Физические и химические свойства ароматических углеводородов.
- 22. Электрофильное замещение производных бензола. Правило ориентации.
- 23. Номенклатура и изомерия галогенопроизводных углеводородов.
- 24. Классификация и методы получения галогенопроизводных углеводородов.
- 25. Химические свойства и применение галогенопроизводных углеводородов.
- 26. Номенклатура и изомерия спиртов.
- 27. Классификация и методы получения спиртов.
- 28. Химические свойства и применение спиртов.
- 29. Двухатомные спирты, их получение и свойства. Этиленгликоль.
- 30. Трехатомные спирты. Глицерин, его свойства, применение, биологическое значение.
- 31. Классификация, номенклатура и изомерия фенолов.
- 32. Физические и химические свойства фенолов.
- 33. Получение и применение фенолов.
- 34. Номенклатура и изомерия альдегидов и кетонов.
- 35. Методы получения альдегидов и кетонов. Применение.
- 36. Физические и химические свойства альдегидов и кетонов.
- 37. Классификация, номенклатура и изомерия карбоновых кислот.
- 38. Методы получения и применение карбоновых кислот.
- 39. Физические и химические свойства одноосновных карбоновых кислот.
- 40. Функциональные производные карбоновых кислот. Их получение и свойства.
- 41. Жиры, их классификация, физические свойства и биологическая роль.
- 42. Химические свойства и получение жиров.
- 43. Оптическая изомерия.. Проекционные формулы Фишера. D- и L- ряды.
- 44. Классификация углеводов. Биологическая роль углеводов.
- 45. Моносахариды. Стереохимия моносахаридов. D- и L- ряды.
- 46. Циклические формы моносахаридов: пиранозы и фуранозы.
- 47. Химические свойства моносахаридов. Биологическая роль глюкозы и фруктозы.
- 48. Классификация дисахаридов. Восстанавливающиеся дисахариды.
- 49. Классификация дисахаридов. Невосстанавливающиеся дисахариды.
- 50. Полисахариды. Крахмал, его строение и свойства. Гликоген.
- 51. Полисахариды. Целлюлоза, ее строение, свойства и применение. Искусственное волокно.
- 52. Амины, их классификация и номенклатура.

- 53. Методы получения и особенности изомерии аминов.
- 54. Физические и химические свойства аминов.
- 55. Ароматические амины, их методы получения и свойства. Анилин.
- 56. Аминокислоты: классификация и номенклатура.
- 57. Методы получения и химические свойства аминокислот.
- 58. Классификация белков. Функции белков в организме.
- 59. Строение белков. Пептидная связь, полипептиды.
- 60. Химические свойства и метолы синтеза белков.

3.2.2. Критерии оценивания устного ответа на экзамене

Оценка «5» («отлично») соответствует следующей качественной характеристике: «изложено правильное понимание вопроса и дан исчерпывающий на него ответ, содержание раскрыто полно, профессионально, грамотно». Выставляется студенту, обнаружившему всестороннее систематическое знание учебно-программного материала, четко и самостоятельно (без наводящих вопросов) отвечающему на вопрос билета.

Оценка «4» («хорошо») соответствует следующей качественной характеристике: «изложено правильное понимание вопроса, дано достаточно подробное описание предмета ответа, приведены и раскрыты в тезисной форме основные понятия, относящиеся к предмету ответа, ошибочных положений нет». Выставляется студенту, показавшему систематический характер знаний по дисциплине и способному к их самостоятельному пополнению и обновлению в ходе дальнейшей учебы и профессиональной деятельности.

Оценка «**3**» («удовлетворительно») выставляется студенту, обнаружившему знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы, справляющемуся с выполнением заданий, предусмотренных программой;

- допустившему неточности в ответе и при выполнении экзаменационных заданий, но обладающими необходимыми знаниями для их устранения под руководством преподавателя.

Оценка **«2»** (**«неудовлетворительно»**) выставляется студенту, обнаружившему существенные пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий; давшему ответ, который не соответствует вопросу экзаменационного билета.